首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3465篇
  免费   413篇
  国内免费   244篇
  2023年   104篇
  2022年   99篇
  2021年   145篇
  2020年   164篇
  2019年   162篇
  2018年   139篇
  2017年   125篇
  2016年   121篇
  2015年   133篇
  2014年   163篇
  2013年   255篇
  2012年   129篇
  2011年   144篇
  2010年   104篇
  2009年   158篇
  2008年   154篇
  2007年   158篇
  2006年   172篇
  2005年   204篇
  2004年   192篇
  2003年   157篇
  2002年   129篇
  2001年   74篇
  2000年   67篇
  1999年   58篇
  1998年   43篇
  1997年   37篇
  1996年   39篇
  1995年   35篇
  1994年   34篇
  1993年   32篇
  1992年   24篇
  1991年   22篇
  1990年   31篇
  1989年   20篇
  1988年   17篇
  1987年   24篇
  1986年   14篇
  1985年   35篇
  1984年   22篇
  1983年   19篇
  1982年   21篇
  1981年   22篇
  1980年   17篇
  1979年   17篇
  1978年   29篇
  1977年   18篇
  1976年   13篇
  1975年   12篇
  1974年   5篇
排序方式: 共有4122条查询结果,搜索用时 31 毫秒
41.
42.
Boreal forest ecosystems are important drivers of the global carbon (C) cycle by acting as both sinks and sources of atmospheric CO2. While several factors have been proposed as determining the ability of boreal forest to function as C sinks, little is known about their relative importance. In this study, we applied structural equation modelling to a previously published dataset involving 30 boreal-forested islands that vary greatly in their historic fire regime, in order to explore the simultaneous influence of several factors believed to be important in influencing above-ground, below-ground and total ecosystem C accumulation. We found that wildfire was a major driver of ecosystem C sequestration, and exerted direct effects on below-ground C storage (presumably through humus combustion) and indirect effects on both above-ground and below-ground C storage through altering plant-community composition. By contrast, plant diversity influenced only below-ground C storage (and even then only weakly), while net primary productivity and decomposition had no detectable effect. Our results suggest that while boreal forests have great potential for storing significant amounts of C, traits of dominant plant species that promote below-ground C accumulation and the absence of wildfire are the most important drivers of C sequestration in these ecosystems.  相似文献   
43.
Double-strand breaks (DSBs) are among the most lethal DNA lesions, and a variety of pathways have evolved to manage their repair in a timely fashion. One such pathway is homologous recombination (HR), in which information from an undamaged donor site is used as a template for repair. Although many of the biochemical steps of HR are known, the physical movements of chromosomes that must underlie the pairing of homologous sequence during mitotic DSB repair have remained mysterious. Recently, several groups have begun to use a variety of genetic and cell biological tools to study this important question. These studies reveal that both damaged and undamaged loci increase the volume of the nuclear space that they explore after the formation of DSBs. This DSB-induced increase in chromosomal mobility is regulated by many of the same factors that are important during HR, such as ATR-dependent checkpoint activation and the recombinase Rad51, suggesting that this phenomenon may facilitate the search for homology. In this perspective, we review current research into the mobility of chromosomal loci during HR, as well as possible underlying mechanisms, and discuss the critical questions that remain to be answered. Although we focus primarily on recent studies in the budding yeast, Saccharomyces cerevisiae, examples of experiments performed in higher eukaryotes are also included, which reveal that increased mobility of damaged loci is a process conserved throughout evolution.  相似文献   
44.
The cleavage of peptide bonds by metallopeptidases (MPs) is essential for life. These ubiquitous enzymes participate in all major physiological processes, and so their deregulation leads to diseases ranging from cancer and metastasis, inflammation, and microbial infection to neurological insults and cardiovascular disorders. MPs cleave their substrates without a covalent intermediate in a single‐step reaction involving a solvent molecule, a general base/acid, and a mono‐ or dinuclear catalytic metal site. Most monometallic MPs comprise a short metal‐binding motif (HEXXH), which includes two metal‐binding histidines and a general base/acid glutamate, and they are grouped into the zincin tribe of MPs. The latter divides mainly into the gluzincin and metzincin clans. Metzincins consist of globular ~130–270‐residue catalytic domains, which are usually preceded by N‐terminal pro‐segments, typically required for folding and latency maintenance. The catalytic domains are often followed by C‐terminal domains for substrate recognition and other protein–protein interactions, anchoring to membranes, oligomerization, and compartmentalization. Metzincin catalytic domains consist of a structurally conserved N‐terminal subdomain spanning a five‐stranded β‐sheet, a backing helix, and an active‐site helix. The latter contains most of the metal‐binding motif, which is here characteristically extended to HEXXHXXGXX(H,D). Downstream C‐terminal subdomains are generally shorter, differ more among metzincins, and mainly share a conserved loop—the Met‐turn—and a C‐terminal helix. The accumulated structural data from more than 300 deposited structures of the 12 currently characterized metzincin families reviewed here provide detailed knowledge of the molecular features of their catalytic domains, help in our understanding of their working mechanisms, and form the basis for the design of novel drugs.  相似文献   
45.
The antibacterial and antibiofilm activities of two new ruthenium complexes against E. coli, S. aureus, P. aeruginosa PAO1 (laboratory strain) and P. aeruginosa LES B58 (clinical strain) were evaluated. Complexes, mer‐[RuIII(2‐bimc)3] ? H2O ( 1 ) and cis‐[RuIVCl2(2,3‐pydcH)2] ? 4H2O ( 2 ), were obtained using aromatic carboxylic acid ligands, namely, 1H‐benzimidazole‐2‐carboxylic acid (2‐bimcH) and pyridine‐2,3‐dicarboxylic acid (2,3‐pydcH2). Compounds were physicochemically characterized using X‐ray diffraction, Hirshfeld surface analysis, IR and UV/VIS spectroscopies, as well as magnetic and electrochemical measurements. Structural characterization revealed that Ru(III) and Ru(IV) ions in the complexes adopt a distorted octahedral geometry. The intermolecular classical and weak hydrogen bonds, and π???π contacts significantly contribute to structure stabilization, leading to the formation of a supramolecular assembly. Biological studies have shown that the Ru complexes inhibit the growth of bacteria and biofilm formation by the tested strains and the complexes seem to be a potential as antimicrobial agents.  相似文献   
46.
Exploring new structure prototypes and phases by material design, especially anode materials, is essential to develop high‐performance Na‐ion batteries. This study proposes a new anode, Na2Cu2.09O0.50S2, with a 1D crystal structure and outstanding Na storage performance. In view of the crystal structure of Na2Cu2.09O0.50S2, [Cu4S4] chains act as electrically conducting units enabling conductivity as high as 0.5 S cm?1. The residual Na4[CuO] chains act as ionically conducting units forming rich channels for the fast conduction of Na ions as well as maintaining the structural stability even after Na ion extraction. Additional ball milling on the as‐prepared Na2Cu2.09O0.50S2 significantly decreases its grain size, achieving a capacity of 588 mA h g?1 with a high initial Coulombic efficiency of 93% at 0.2 A g?1. Moreover, the Na2Cu2.09O0.50S2 anode demonstrates outstanding rate capability (408 mA h g?1 at 2 A g?1) and extending cyclic performance (82% of capacity retention after 400 cycles). The general structural design idea based on functional units may offer a new avenue to new electrode materials.  相似文献   
47.
Rechargeable aqueous batteries with Zn2+ as a working‐ion are promising candidates for grid‐scale energy storage because of their intrinsic safety, low‐cost, and high energy‐intensity. However, suitable cathode materials with excellent Zn2+‐storage cyclability must be found in order for Zinc‐ion batteries (ZIBs) to find practical applications. Herein, NaCa0.6V6O16·3H2O (NaCaVO) barnesite nanobelts are reported as an ultra‐stable ZIB cathode material. The original capacity reaches 347 mAh g?1 at 0.1 A g?1, and the capacity retention rate is 94% after 2000 cycles at 2 A g?1 and 83% after 10 000 cycles at 5 A g?1, respectively. Through a combined theoretical and experimental approach, it is discovered that the unique V3O8 layered structure in NaCaVO is energetically favorable for Zn2+ diffusion and the structural water situated between V3O8 layers promotes a fast charge‐transfer and bulk migration of Zn2+ by enlarging gallery spacing and providing more Zn‐ion storage sites. It is also found that Na+ and Ca2+ alternately suited in V3O8 layers are the essential stabilizers for the layered structure, which play a crucial role in retaining long‐term cycling stability.  相似文献   
48.
49.
  • Cold‐adapted trees display acclimation in both carbon source and carbon sink capacity to low‐temperature stress at their upper elevational range limits. Hence a balanced carbon source–sink capacity might be required for their persistence and survival at the elevational tree limits.
  • The present study examined the spatial dynamics of carbon source–sink relationship in subalpine fir (Abies fargesii) trees along elevational gradients in the northern slope of the temperate region and in the southern slope of the subtropics in terms of climate in the Qinling Mountain range, north‐central China.
  • The results showed that non‐structural carbohydrate (NSC) concentrations in both the source and sink tissues increased with the increase in elevation. The ratio of carbon source–sink displayed a consistent decreasing trend with the increase in elevation and during growing season, showing that it was lowest at a ratio of 2.93 in the northern slope and at a ratio of 2.61 in the southern slope at the upper distribution elevations in the late growing season. Such variations of carbon source–sink ratio might be attributable to the balance between carbon source and sink activities, which changed seasonally across the elevational distribution range.
  • We concluded that a ratio of carbon source–sink of at least 2.6 might be essential for subalpine fir trees to persist at their upper range limits. Therefore, a sufficient source–sink ratio and a balanced source–sink relationship might be required for subalpine fir trees to survive and develop at their upper elevational distribution limits.
  相似文献   
50.
The death domain (DD) is a globular protein motif with a signature feature of an all‐helical Greek‐key motif. It is a primary mediator of a variety of biological activities, including apoptosis, cell survival and cytoskeletal changes, which are related to many neurodegenerative diseases, neurotrauma, and cancers. DDs exist in a wide range of signalling proteins including p75 neurotrophin receptor (p75NTR), a member of the tumour necrosis factor receptor superfamily. The specific signalling mediated by p75NTR in a given cell depends on the type of ligand engaging the extracellular domain and the recruitment of cytosolic interactors to the intracellular domain, especially the DD, of the receptor. In solution, the p75NTR‐DDs mainly form a symmetric non‐covalent homodimer. In response to extracellular signals, conformational changes in the p75NTR extracellular domain (ECD) propagate to the p75NTR‐DD through the disulfide‐bonded transmembrane domain (TMD) and destabilize the p75NTR‐DD homodimer, leading to protomer separation and exposure of binding sites on the DD surface. In this review, we focus on recent advances in the study of the structural mechanism of p75NTR‐DD signalling through recruitment of diverse intracellular interactors for the regulation and control of diverse functional outputs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号